Using Genebank diversity and state-of-the-art biotechnological approaches to improve breeding and food security

Dr. Goetz Hensel

Plant research as an instrument to handle environmental future tasks

Vision Mission Goal

The IPK sees itself as a catalyst for the social transformation, which aims at an efficient and sustainable supply of food, energy and raw materials. It creates solutions that are based on a knowledge-based conservation and exploration and exploiting of the biodiversity of cultivated plants.

Scientific excellence and social relevance

Innovations for sustainable performance improvement of crop plants

Establishment of IPK as

- a leading biological digital resource centre of knowledge-based use of biodiversity
- a Global trendsetter of genome analysis from Triticeae
- an innovation centre for the development of plant breeding technologies for wheat and barley
- an international beacon of elucidation of the molecular and physiological processes of agronomic characteristics

The four scientific departments of the IPK work on the elucidation of fundamental principles of the evolution, development and adaptability of important crops. On this basis the IPK develop innovative approaches for a knowledge-based conservation and exploitation of crop diversity to increase the resource efficiency and sustainability of plant-based production processes

Centres of plant conservation

Genebanks holding >10,000 accessions (blue); CGIAR Centers genebanks (beige); SGSV4 (dark green) (Source: FAO 2010)

IPK Genebank

Collections	Accessions		
Cereals and Grasses	65,897		
Wheat	28,206		
Barley	23,607		
Oat	4,849		
Rye	2,410		
Aegilops	1,526		
Legumes	27,819		
Vegetables	21,052		
Oil-/ Fibercrops	5,478		
Medicinal-/ Spiceplants	8,194		
Forage crops	14,388		
Potatoes	6,217		
Total	150,751		

Seed regeneration

Genebank – Field work

- Multiplication (6,164 acc)
- Cryopreservation (1,859 potatoes, garlic)
 - Field genebank (3,159 acc)
 - 420,000 voucher specimen
 - 154,000 reference samples (seed, fruits, spikes)

Sustainability and adaptation

Plant performance

Delivery, valorization and utilization

5. Mechanisms of Resistance and Stress Tolerance

1. Concepts for Valorization of Genetic Resources

4. Growth and Metabolism

Biodiversity
and Performance
of Crops

Diversity and Evolution

2. Genome-

3. Mechanism of Plant Reproduction

Breeding technologies

Predict genotypic value

Value capture of Genetic Resources

- conservation management

- distribution of samples

- trait mapping
- gene isolation
- systems biology

- enabling technologies

Biodiversity

Informatics

Crop Plants

Barley

Wheat

Corn

Legumes

Rapeseed

Model Plants

Arabidopsis thaliana

Tôbacco

Cress

Research Infrastructure

DNA Sequencing

- ABI 3730 XL
- Roche 454 FLX
- Illumina HiSeq 2000

Microscopy

- transmission and scanning electron microscopy
- Confocal laser scanning microscopy
- Confocal Spinning Disc Mikroskopy
- High-resolution microscopy

Computer systems

- Cluster Computer with 200-core
- 2 Server with main memory size (SMP)
- high-performance server

Chromatography/Mass spectroscopy

- Proteins (Nano-HPLC + ESI-MS/MS, MALDI-TOF-MS)
- Metabolites (HPLC-MS, ICP-MS, EA-IRMS, GC-MS)

Plant Phenotyping

NMR: Seed

Microscopy: Leaves: Epidermis

Greenhouse: Figures RGB, Fluor, NIR, IR

- ➤ Protocol development for registration of plant parameters, growth and environmental conditions
- > Image Analysis

Transformation and regeneration

T₀ spike, genetic segregation

Agrobacterium-mediated gene transfer

Agrobacterium-mediated gene transfer to cereals

Hensel et al. 2009, Int J Plant Genomics
L. Gugsa, unpublished

Hensel et al. 2016, PLoS One

Endosperm-specific expression of AsGlo1P::gfp

- metabolic engineering (e.g. carbohydrates, proteins)
- production of recombinant proteins (enzymes, antibodies, vaccines etc.)

A. Himmelbach et al. 2010, Plant Cell Co-operation with P. Schweizer Group, IPK

Epidermis-specific and pathogen-inducible expression of GER4P::GUS

- functional analysis of genes involved in plant pathogen interactions
- inducible expression to avoid pleiotropic effects

Daghma et al. 2014, Frontiers in Plant Science

Microspore-specific expression

ZmUbi1P:NLS::gfp

- functional analysis of POEM initiation
- production of doubled haploid plants for breeding processes

Hiekel et al, Acta Horticulturae 2015

CRISPR RNA-guided/Cas9-mediated mutagenesis

CRISPR RNA-guided/Cas9-mediated mutagenesis

CRISPR RNA-guided/Cas9-mediated mutagenesis

Cas9
...C TTACCTCATCGCCA AGCTGGCACCCTTGTTCAAGCCGAATACCGAATGGAAGTG...
target DNA
...CTTACCTCATCGCCAAGCTGGCACCCTTGTT

CAAGCGGACAGCAATACCGAATGGAAGTG...
CTTACCTCATCGCCAAGCTGGCACCCTTGTT

CAAGCGGACAGCAATACCGAATGGAAGTG...
GTTCGCCTGTCGTTATGGCTTACCTTCAC...

Repair

error-free

...C T T A C C T C A T C G C C A A G C T G G C A C C C T T G T T C A A G C G G A C A G C A A T A C C G A A T G G A A G T G...

...G A A T G G A G T A G C G G T T C G A C C G T G G G A A C A A G T T C G C C T G T C G T T A T G G C T T A C C T T C A C...

erroneous

...C T T A C C T C A T C G C C A A G C T G G C A C C C T T G T T - A A G C G G A C A G C A A T A C C G A A T G G A A G T G...

...G A A T G G A G T A G C G G T T C G A C C G T G G G A A C A A - T T C G C C T G T C G T T A T G G C T T A C C T T C A C..

Götz Hensel, Sabine Sommerfeld, Sibylle Freist, Jochen Kumlehn

Golden Promise WT, Vrs1

Golden Promise vrs1-KO (awns of spikelets removed)

KO lines show fully developed lateral spikelets

Molecular Farming

Comparison of different production systems

System	Overall costs	Production time	Scale-up capacity	Product quality	Contamination risk	Purification costs
Bacteria	low	short	high	low	medium	high
Yeast	low	short	high	medium	medium	high
Insects	medium	medium	medium	high	high	medium
Mammalian cells	high	long	medium	very high	very high	high
Plant cells	medium	medium	high	high	very low	medium
Whole plants	low	very long	very high	high	low	high

Source: Xu et al., (2011) 29:278-299, modified

Advantages of barley

Experimental model for small-grain cereals and agronomically important

Exhibits a broad range of adaptability

Relatively high protein content (12-15%)

Caryopses are prone to be used as bioreactor

Self-pollinating nature and no outcrossing

G.R.A.S. (generally recognized as safe) status from FDA

Low production costs due to a highly developed infrastructure for harvest,

transportation and storage

Bioproduction of Recombinant Protein in Barley Grains

Hensel at al. 2015 PIOS One

Endosperm-specific expression of the HIV neutralizing antibody 2G12

- cause of AIDS (acquired immunodeficiency syndrome)
- ■antibody neutralize the virus by binding to gp120

- ■160 g antibody per kg mature grains produced
- biacore binding assays were promising

Thanks to the Plant Reproductive Biology group members

Head: J. Kumlehn

Cooperators at IPK

A. Houben, T. Ishii

M. Melzer, T. Rutten

T. Schnurbusch

N. Stein

P. Schweizer

External cooperators

K. Schmidt, M. Nießen (KWS)

A. Hanemann (Breun Saatzucht)

S. Kusch, R. Panstruga, (RWTH Aachen)

R. Morbitzer, T. Lahaye (Uni Tübingen)

K. Pillen (Uni Halle)

K. Holubova, P. Galuszka (Uni Olomouc)

Funding

BMBF

BMEL DFG

ERA-CAPS

Postdocs

Nagu Budhagatapalli Diaa E. Daghma Sindy Schedel

PhD students

Christian Hertig Stefan Hiekel Robert Hoffie Iris Koeppel Krishna Mohan Pathi Barno Rezaeva

Technical assistants

Helga Berthold
Carola Bollmann
Heike Büchner
Sibylle Freist
Petra Hoffmeister
Susanne Knüpffer
Conny Marthe
Andrea Müller
Ingrid Otto
Sabine Sommerfeld

Undergrads and guests

Pouneh Pouramini Somayeh Sardouei Fayaz Shaikh

Thank you

http://www.the-scientist.com/images/December2012/Genome.jpg

