BIOTECHNOLOGY opportunity for intersectoral cooperation and technology transfer Date: 19th September, 2018 ■ Venue: Vodňany, MEVPIS – Na Valše 207 # Interdisciplinary Approach to Microalgae Biotechnology #### Ji í MASOJÍDEK Institute of Microbiology of the CAS, Centre ALGATECH, T ebo University of South Bohemia, Faculty of Science, eské Bud jovice #### **Outline** - Algatech Centre in T ebo - Historical entrée to Microalgae Biotechnology European projects – Interdisciplinary Approach to Microalgae Biotechnology ### Czech Academy of Sciences Institute of Microbiology Algatech Centre F since 2011 #### >100 employees #### The Bible of Microalgae Biotechnology John S. Burlew (editor) 1953 Algal culture: from laboratory to pilot plant # Past and present: a timeline Microalgae Biotechnology #### Development in Czechoslovakia (Czech Republic) 1940 1950 Large scale cultivation of microalgae Institute of Microbiology Třeboň, Czechoslovakia 1960 Russian Army invasion to Czechoslovakia 1970 Czechoslovak astronaut 1980 Remek carried out experiment 'Chlorella 1' on board of aircraft Salvut 6 1990 Revival of microalgal biotechnology 2000 2010 in Czechoslovakia Proposal to produce oil from alg Pilot plants for mass cultivation c started as a source of protein for Germany, Japan, Massive development of microalg Taiwan, Japan, USA, Mexico, Chir New strains - *Dunaliella, Haematococcus* - Australia, USA Development of microalgae cultivation worldwide - biofuels? **Search for bioactive compounds** **Biorafinery** M.Borowitzka 2011, O.Pulz 2013 #### Microalgae Biotechnology in T ebo First cultivation system built in 1958 at Kozice for the short popular-science movie ## **ISOLAR LABORATORYÐ** Schematic diagram of cascade cultivation unit of 12 m² -- cultivation surface was set up as shallow troughs made of reinforced polyester resin and arranged stepwise (1960) # Thin-layer cascade Ëunique cultivation system #### First large-scale cultivation system in Europe in 1962 Šetlík, Málek et al. (1970) Dual purpose open cultivation units for large scale culture of algae in temperate zones. Algological Studies 1: 111-164. #### mid 1970s Space programme Intercosmos - first Czechoslovak cosmonaut Remek carried out experiment iChlorella 1£on board of aircraft Salyut 6 - March 1978 Experiment was prepared by the team from T ebo - study of microalgae growth under microgravity conditions # TLCs Ë further development #### DEMO unit 90 m² Highly productive system - 2013 #### ChIFluo use in microalgae mass culture # Early 1990s in T ebo Ë introduction of Chl fluorescence into microalgal mass culture monitoring - In the 1990s operations were often carried out semiempirically. disputes/discussions between biotechnologists vs. physiologists & photosynthetists - Based on photosynthetic studies in crops, we've pioneered the use of chlorophyll fluorescence to monitor changes of photosynthesis and physiology of microalgae mass cultures in large-scale units (Prázil, Nedbal, Grobbellaar, Torzillo, Vonshak). - Classical approach semi-empirical growth optimisation vs. photosynthetic activity monitoring ### Microalgae Biotechnology Ë interdisciplinary topic #### **Biology** - Strain selection and characterization - Determination of growth conditions # **Culture Activity Monitoring** - Physiology - Photosynthesis - Growth #### **Engineering** - Construction of cultivation units (photostage, pumps & electronics, sensors) #### Culturing - Optimisation of growth regimes -Pilot trials - Scale-up #### Downstream processing - -Biorefinary - High value productsBioactive compoundsLow value - Low value products # **European projects in Microalgae Biotechnology** - EU H2020 ÏSABANAĐproject (2016-2020) Sustainable integrated Algae Biorefinery for the production of bioactive compounds for Agriculture aNd Aquaculture - o Interreg project CR-Austria ÏALGENETICS Rakousko-Česká republika Czech-Austrian Centre for Algal Biotechnology (2017-2019) - Interreg project Ba-Cz Joint research of natural substances from cyanobacteria as a example of crossboarder partnership in science 12 ### **SABANA** project #### **Sustainable Algae Biorefinery for Agriculture and Aquaculture** EU Horizon 2020 (2016-2020) Research and Innovation Programme - Aims to demonstrate a microalgae-based sustainable technology for production of biostimulants and biopesticides for agriculture and feed for aquaculture recovering nutrients from wastewaters (sewage, centrate and pig manure) - Scale-up to area of DEMO plant of tens of hectares thin-layer cascades, raceway ponds ### Partners of the project #### **Schematic diagram of SABANA** Almeria, Andalusia, Spain . 26 000 ha of greenhouses - Large scale production: Develop robust and scalable microalgae production and biomass processing, in continuous mode all year around - Sustainable production: To integrate microalgae biotechnology and the treatment of wastes in order to increase the sustainability of the process - Markets/commercialization: Only products demanded by the market and legally accepted are considered # Block diagram of the project Overal objective of SABANA - to develop and demonstrate an integrated microalgae-based sustainable biorefinery to produce a range of value-added products (biostimulants, biopesticides and aquafeed additives) and low-value products (biofertilizers, aquafeed) for agriculture and aquaculture recovering nutrients from wastewaters (sewage, centrate and pig manure) # Schedule of the project multidisciplinary approach # Start point: market study Agriculture and aquaculture are large markets demanding new products from microalgae with lower safety requirements ### Analysis of Biomass Production Costs - Market of agriculture products is more interesting that aquaculture - Production costs below 2 "/kg are feasible only when using nutrients from wastewaters - Production costs are lower when using Thin-layer cascades due to the higher productivity of these systems ### **Location of production plant** 20 #### Tasks of ALGATECH team - Design and construction of cultivation units (Algatech, University of Almeria) - Characterisation of selected microalgae strains for agricultural purposes - freshwater cyanobacteria and greens producing biostimulants and biopesticides (supplied from Culture collection of Szechenyi Istvan University, Hungary) - Selection and verification of monitoring techniques to optimise the culture growth in large-scale units (Algatech, University of Almería, University of Málaga, ISE-CNR in Sesto Fiorentino) 21 #### **Lab Cultivation - Photobioreactors** Cultivation in 300mL glass cylinders Chlorella strains in 3-L flat-plate PBRs Nostoc MACC-612 and Chlamydopodium MACC-430 in 100L bubble column PBRs # **ALGATECH T ebo**Outdoor Pilot Units Thin-layer cascade and raceway pond mounted in a greenhouse (area 5 m², culture depth 5-20 mm) → a hybrid technology between raceway pond and thin-layer cascade # After one year in AlmeríaÅ # ALGENETICS #### **Czech - Austrian Centre for Algal Biotechnology** Cross-boarder collaborative research between - FH OÖ Forschungs & Entwicklungs GmbH in Wels - Centre Algatech, Institute of Microbiology in Třeboň #### Strategic Partner: FH OÖ Studienbetriebs GmbH University of South Bohemia in České Budějovice #### **ALGENETICS** - Main objective to set-up joint Czech-Austrian Centre for Algae Biotechnology - Research objective characterisation of genetically improved/modified cyanobacteria strains as a potential producers of high-value compounds - Construction, selection and characterisation of genetically modified cyanobacteria (over)producing glycogen/starch - Optimising cultivation regimes of mutants from laboratory to pilot scale cultivation ### Hypothesis of the project - Starch is one of the basic industrial feedstock - Cyanobacteria are easy to grow using just solar energy and waste nutrients - Cyanobacteria produce glycogen (storage sugar) in contrast to higher plants (starch) - Glycogen is more complicated to proces than starch - Lets change cyanobacteria to produce starch and/or ethanol # Construction of Synechocystis mutants for ethanol and starch production ## Molecular Biology FH ÖO Wels Contruction of Mutants # Cultivation ALGATECH Třeboň - Characterisation of strains - Optimisation of culturing regimes # **Processing**Both partners Isolation of products – ethanol, starch #### **Photobioreactors** #### Laboratory cultivation of Synechocystis PCC6803 10-L PBR 25-L fully controlled Flat Panel PBR 100-L PBR with internal illumination ### Natural metabolic pathways Schematic diagram of metabolic pathways of the accumulation of starch, sucrose and glycogen in microalgae Gonzáles-Fernandez and Ballesteros, 2012 ### Natural metabolic pathways #### Schematic diagram of metabolic pathways Gonzáles-Fernandez and Ballesteros, 2012 # Construction and selection genetic modified cyanobacteria - Starch/Glycogen # Potential production of Starch by Cyanobacteria Can Supplement Production of EtOH from wheat Starch # InterReg project Ba-Cz # Joint Research of Natural Substances from Cyanobacteria as an Example of Cross-boarder Partnership in Science WP 1 Screening of strains affecting neural stem cell differenciation and antifungal compounds **WP 2** **Cultivation** and characterisation of cyanobacteria strains WP 3 – Genetic modification of cyanobacteria WP 4 Transcriptomics and metabolomics WP 5 Development of various lipopeptides using synthetic modification WP 6 Biomass residues and their utilisation WP 7 Sustainability and EIA LCA, social impact on regional development ### **Further prospects** - Optimisation of cultivation regimes in photobioreactors - Characterisation and production of novel bioactive substances - secondary metabolites of microalgae - testing of their applications. - Development of new technological procedures leading to production of microalgae biomass/products in phototrophic or heterotrophic growth regimes - Innovations of downstream processes in the production of microalgae biomass - Development of new methods for the extraction of bioactive compounds from biomass ### **Acknowledgements** - Karolína Ranglová, Gergély Lakatos, So a Peka ová, Tomáý Grivalský, Joao Manoel, Richard Lhotský, Kumar Saurav, Pavel Hrouzek Centre Algatech, Institute of Microbiology, Academy of Sciences, T ebo - o Felix Figueroa University of Málaga, Spain - Gabriel Acién, Cintia Gómez, Francesca Suarez, Marta Barceló University of Alméria, Spain - Vince Ördög Széchenyi István University in Mosonmagyaróvár, Hungary (strains) - Juliane Richter, Richard Gundolf FH OÖ Forschungs & Entwicklungs GmbH in Wels #### **Funding programmes** - Algatech Plus Ministry of Education, Youth and Sports, CR - > EU H2020 project SABANA - > Interreg At-Cz - > Interreg Cz-Ba - Bilateral scientific agreement CNR-AV R # Thank you for attention # Questions, remarks? masojidekj@seznam.cz #### **High-energy products – Starch/Glycogen** #### Starch - In plants and eukaryotic algae - Consists of ``` " 20-30 % Amylose: -1.4 Glucose (Glc) ``` - 70-80 % Amylopectin: -1.4 and -1.6 Glc (every 30th 1.4 Glc) - Granules up to 100 μm (diameter) #### Glycogen - In Prokaryotes, e.g. Cyanobacteria - Consists of ``` " -1.4 and -1.6 Glc (every 8-12 -1.4 Glc) ``` Particles up to 42 nm (diameter) ### Fields of expertise - Design and construction of various cultivation units - Screening and selection of microalgae strains - Optimisation of culturing regimes for selected microalgae strains. monitoring techniques - Production of biomass enriched in bioactive compounds - Identification and characterisation of bioactive compounds # Characterization of microalgae for agriculture purposes E Biopesticides & Biostimulants #### **Strains - freshwater, marine** - Nostoc, Tolypothrix - Chlorella, Scenedesmus, Nostoc Microalgae Collection of Institute of Microbiol Microalgae Collection of Szeczenyi Istvan Ur #### Bioassays: Biopesticide effect **Dual culture PhyB-Algal Extract** **Dual culture PhyF-Algal Extract** Effect against different plant pathogens measured *in-vitro*: extracts of freeze-dried biomass. University of Almería and Szeczenyi Istvan University, #### Phytopathogenic Fungi: PU: Pythium ultimum FOM: Fusarium oxysporum f.sp. melonis RS: Rhizoctonia solani PCAP: Phytophthora capsici #### Phytopathogenic Bacteria: XC: Xanthomonas campestris PCC: Pectobacterium carotovorum PST: Pseudomonas syringae CMM: Clavibacter michiganensis # Workpackages # WP 1 Ë Screening of valuable compounds that influence neural stem cells differenciation, cytotoxic compounds and compounds with antifungal activity - " Tests of 80-100 cyanobacterial extracts - " Fractionation of extracts to identify the compound - " Detailed study of clean substances nad structure determination # WP 2 Ë Cultivation and characterisation of cyanobacterial species and strains - " Growth condition optimisation - " Phototrophic cultivation from lab scale to pilot scale - " Outdoor cultivation systems . TLC or RW ### WP 3 Ë Genetic modification of cyanobacteria - " Introduce microalgae as a safe, cheap, variable and sustainable platform for biopharmaceutical production - " Develop fast methods for approvement of genetical transformation - " Preparation of transformed strains for scale up #### WP 4 - Transcriptomics and metabolomics " Study of genetical metabolic changes after changes in the environment (e.g. light or nutrient stress) # WP 5 Ë Development of various lipopeptides using synthetic modification - " Chemical modification of lipid chains in puwainaphyc F and lyngbyatoxin A - " Efficiency verification of changed chemical structure ### WP 6 Ë Biomass residues and their utilisation - " Biomass use - " Biopolymers from residue biomass ## WP 7 Ë Sustainability and EIA " LCA, TEA, social impact on regional development Mass cultivation: Development of a robust, economical and modular system of a mass cultivation and down stream processing of microalgae. Sustainabe production: Integrate algae technology to the waste water treatment systém to decrease the price of final biomass. Market and commercialisation: Project considers only products # Technical challenges #### LARGE SCALE BIOMASS PRODUCTION #### **Biology** - Strains: pure/mixture cultures - Growth promoters: bacteria/biostimulants - Photosynthetic efficiency - Characterization: PCR-HRM #### Engineering - Bioreactors: thin-layer cascade, improved raceway - Efficiency: power consumption, mass transfer - Modeling and advanced control - Scale-up: 1000 m², 5000 m² #### Sustainability - Nutrients recovery: C, N, P. - Reduction of GHG emission - CO₂ supply from biomass - Zero waste processes # Technical challenges #### INTEGRAL UTILIZATION OF THE BIOMASS #### Harvesting - Conventional: flocculation, sedimentation, flotation, centrifugation - Novel methods: electro flocculation, membranes. #### **Processing** - Cell disruption: PEF, mechanical, enzymatic - Extraction: biocompatible solvents. - Fractionation/purification: selective solvents, chromatography #### **Products** - High value products: biostimulants/biopesticides for crops, antioxidants/health enhancer for aquaculture - Low value products: biofertilizers for crops, feed for aquaculture ### **Participants** #### **SPAIN** - Coordinator: Universidad de Almería, España (prof. Gabriel Acién) - AQUALIA SA - BIORIZON BIOTECH - Spanish Bank of Algae, Universidad de Las Palmas, Gran Canaria #### **GERMANY** - GEA WESTFALIA GROUP Gmbh - Karlsruher Institut f Technologie #### **ITALY** - Universita degli Studi di Milano - CIB Consorzio Italiano Biogas e Gassificazione #### **HUNGARY** Szechenyi István University #### CZECH REPUBLIC Institute of Microbiology AVČR, v.v.i. #### masojidek@alga.cz # Chl fluorescence ËO₂ production #### Various approaches – on-line/in situ & off-line Fast Fluorescence Induction Kinetics (OJIP-test) . handheld fluorometers Pulse-Amplitude-Modulation technique (PAM) Saturation pulse analysis of fluo quenching #### Tasks in WP6 for UAL E Biostimulant #### Task 6.1. Characterization of microalgae for agriculture purposes Bioastimulant effect: optimzation of growth conditions Bioassay. Germination Index (%) Chlorella R-117, Nostoc MACC-612, Chlamydopodium MACC-430 (microalgae collection of Institute of Microbiology, Třeboň, Czech Republic and microalgae collection of Szeczenyi Istvan University, Mosonmagyarovár, Hungary) ### **High-productivity Microalgae Cultures** # Photosynthetic productivity of microalgae mass cultures is influenced by "average" cell irradiance - \rightarrow the interplay among irradiance intensity, cell-layer thickness (light path), biomass density & turbulence \rightarrow optimisation of growth - Flashing light effect short light/dark cycles → match the turnover of the photosynthetic apparatus ~ 10-100 msec **Advantage of thin layer systems** #### **Case Studies - ALGENETICS** WP 1: Construction and selection genetic modified cyanobacteria - Starch/Glycogen